8,509 research outputs found

    Stochastic effects in a seasonally forced epidemic model

    Get PDF
    The interplay of seasonality, the system's nonlinearities and intrinsic stochasticity is studied for a seasonally forced susceptible-exposed-infective-recovered stochastic model. The model is explored in the parameter region that corresponds to childhood infectious diseases such as measles. The power spectrum of the stochastic fluctuations around the attractors of the deterministic system that describes the model in the thermodynamic limit is computed analytically and validated by stochastic simulations for large system sizes. Size effects are studied through additional simulations. Other effects such as switching between coexisting attractors induced by stochasticity often mentioned in the literature as playing an important role in the dynamics of childhood infectious diseases are also investigated. The main conclusion is that stochastic amplification, rather than these effects, is the key ingredient to understand the observed incidence patterns.Comment: 13 pages, 9 figures, 3 table

    Population dynamics on random networks: simulations and analytical models

    Full text link
    We study the phase diagram of the standard pair approximation equations for two different models in population dynamics, the susceptible-infective-recovered-susceptible model of infection spread and a predator-prey interaction model, on a network of homogeneous degree kk. These models have similar phase diagrams and represent two classes of systems for which noisy oscillations, still largely unexplained, are observed in nature. We show that for a certain range of the parameter kk both models exhibit an oscillatory phase in a region of parameter space that corresponds to weak driving. This oscillatory phase, however, disappears when kk is large. For k=3,4k=3, 4, we compare the phase diagram of the standard pair approximation equations of both models with the results of simulations on regular random graphs of the same degree. We show that for parameter values in the oscillatory phase, and even for large system sizes, the simulations either die out or exhibit damped oscillations, depending on the initial conditions. We discuss this failure of the standard pair approximation model to capture even the qualitative behavior of the simulations on large regular random graphs and the relevance of the oscillatory phase in the pair approximation diagrams to explain the cycling behavior found in real populations.Comment: 8 pages, 5 figures; we have expanded and rewritten the introduction, slightly modified the abstract and the text in other sections; also, several new references have been added in the revised manuscript (Refs. [17-25,30,35])

    Detecting and Describing Dynamic Equilibria in Adaptive Networks

    Full text link
    We review modeling attempts for the paradigmatic contact process (or SIS model) on adaptive networks. Elaborating on one particular proposed mechanism of topology change (rewiring) and its mean field analysis, we obtain a coarse-grained view of coevolving network topology in the stationary active phase of the system. Introducing an alternative framework applicable to a wide class of adaptive networks, active stationary states are detected, and an extended description of the resulting steady-state statistics is given for three different rewiring schemes. We find that slight modifications of the standard rewiring rule can result in either minuscule or drastic change of steady-state network topologies.Comment: 14 pages, 10 figures; typo in the third of Eqs. (1) correcte

    Pair Approximation Models for Disease Spread

    Full text link
    We consider a Susceptible-Infective-Recovered (SIR) model, where the mechanism for the renewal of susceptibles is demographic, on a ring with next nearest neighbour interactions, and a family of correlated pair approximations (CPA), parametrized by a measure of the relative contributions of loops and open triplets of the sites involved in the infection process. We have found that the phase diagram of the CPA, at fixed coordination number, changes qualitatively as the relative weight of the loops increases, from the phase diagram of the uncorrelated pair approximation to phase diagrams typical of one-dimensional systems. In addition, we have performed computer simulations of the same model and shown that while the CPA with a constant correlation parameter cannot describe the global behaviour of the model, a reasonable description of the endemic equilibria as well as of the phase diagram may be obtained by allowing the parameter to depend on the demographic rate.Comment: 6 pages, 3 figures, LaTeX2e+SVJour+AmSLaTeX, NEXTSigmaPhi 2005; metadata title corrected wrt paper titl
    • …
    corecore